深海への熱入力による 湧昇 および海域肥沃化効果の検討

指導教員 多部田茂 東京大学大学院新領域創成科学研究科 環境システム学専攻 修士2年 佐藤慎一

研究の手順

1.湧昇 -熱入力で水は持ち上がるのか?-

・熱入力による湧昇流生成実験
・物理場モデルによる湧昇シミュレーション
・無次元数による環境条件と湧昇高さの整理

2.冷却効率-深層水で発電効率は向上するのか?-

・排熱モデルによる効率低下シミュレーション

3.肥沃化 -深層水でプランクトンは増えるのか?-

・深層水添加によるプランクトン増殖実験
・物理-生態系統合モデルによる肥沃化シミュレーション

以上の3点から、新冷却システムの有用性を検討する。

熱入力による湧昇流生成実験

温度成層と一様な流れを設定した水槽で、熱によるインクの湧昇を観測した。

実験結果 -熱変化による応答-

ヒーター 表面温度 38℃ 月昇高さ 40cm	ヒーター		运击	<u></u>
	電圧 [V]	^{二皮} 勾配	加速 [m / s]	電波加固 [m]
	100	5°C-10°C	0.01	0.4
	55	5°C-10°C	0.01	0.3
CERT A BATE STATE	100	5°C-10°C	0.02	0.28
	100	5°C-15°C	0.01	0.3

湧昇シミュレーションで使用する物理モデル(MEC OCEAN MODEL)

支配方程式

モデルの特徴

シミュレーション計算領域

実験結果と計算結果の比較

ヒーター 電圧 	温度 勾配 [K/m)]	流速 [m/s]	計算値 [m]	計算値 の比	観測値 [m]	観測値 の比
100	5	0.01	0.25	1	0.4	1
55	5	0.01	0.2	0.8	0.3	0.75
100	5	0.02	0.2	0.8	0.28	0.7
100	10	0.01	0.2	0.8	0.3	0.75

計算値の比と観測値の比がほとんど等しくなった。

無次元数による環境条件と湧昇高さの整理

Buckinghamのπ定理より、以下の無次元数を導いた。

W数の対数と無次元湧昇高さH*の対数 に強い相関があることが分かった。

無次元数による環境条件と湧昇高さの整理

Buckinghamのπ定理より、以下の無次元数を導いた。

計算結果はW数とRi数で説明できるが、実験結果は不十分である。

無次元数による環境条件と湧昇高さの整理

Buckinghamのπ定理より、以下の無次元数を導いた。

Re数も加えると、実験結果もW数とRi数で計算と同様に説明できる。

排熱モデルによる効率低下シミュレーション

湧昇が熱を上方に逃がしている可能性がある。

温度・光が十分な環境で、深層水添加後にChl-aや無機栄養塩を異なる時間で測定した。

温度・光が十分な環境で、深層水添加後にChl-aや無機栄養塩を異なる時間で測定した。

深層水添加によるプランクトン増殖実験結果

混合水のChl-aは、はじめ希釈化により、表層水と深層水の値の間の値を取る。 その後、栄養塩を使って増加するが、栄養塩が枯渇すると、減少する。

生態系モデル(NEMURO,2007 & 中田,1993)

物理-生態系統合モデル カイアシ類(ZL)の計算結果

日周鉛直移動をするZLは、他のプランクトンと比べて、桁違いに大きく変化する。 動物プランクトンの移動のパラメータは、肥沃化の鍵となる可能性がある。

新冷却システムによる湧昇・肥沃化効果を検討するための 数値モデルを構築した。

実験と計算により、流れのある成層海域における湧昇高さは、 熱入力(Q)が大きく、成層の温度勾配(G_T)が小さく、流れ (U)が小さいほど大きくなり、U・G_T/Qとリチャードソン数に依 存することを明らかにした。

この湧昇の条件は、特定の条件範囲では冷却効率の点でもプラスに働く。

湧昇による水温変化がプランクトンの空間分布に強く影響する。 特に、鉛直移動する大型動物プランクトンは大きく増殖する可 能性がある。